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Abstract

The discriminability of the feature representation is crucial for face recog-
nition. However, previous methods rely solely on the learnable weights of
the classification layer, which represent the identities. This reliance could
be problematic as the evaluation process depends on the similarity between
pairs of face images and requires minimal identity information learned dur-
ing training. As a result, there is an inconsistency between the training and
evaluation processes, which can confuse the feature encoder and hinder the ef-
fectiveness of identity-based methods. To address this problem, we propose
a novel approach namely Contrastive Regularization for Face Recognition
(CoReFace), which applies sample-level regularization in feature representa-
tion learning. Specifically, we employ sample-guided contrastive learning to
directly regularize the training based on the sample-sample relationship and
thus align it with the evaluation process. To avoid image quality degrada-
tion, we augment the embeddings instead of the images in order to integrate
contrastive learning into face recognition. Additionally, we introduce a new
contrastive loss function for the regularization of representation distribution.
This function incorporates an adaptive margin and a supervised contrastive
mask to ensure stable loss values and prevent interference with the identity
supervision signals. Finally, we explore new pair-coupling protocols in or-
der to overcome the problem of semantically repetitive signals in contrastive
learning. Extensive experiments demonstrate the efficacy and efficiency of
our CoReFace approach, which achieves competitive results compared to
state-of-the-art methods.
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Figure 1: (a) Current identity-based methods aim at intra-class compactness and inter-
class separability in training. However, the identity-based training pays little attention
to the sample-sample relationship which is the foundation of the evaluation process. The
points with gray borderlines represent face images from distinct identities, and other points
with the same borderline color come from the same identity. (b) Our CoReFace takes
contrastive learning as regularization to directly constrain the sample-sample relationship
during training and improve discrimination in evaluation as illustrated in (c).
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1. Introduction

Face recognition (FR) is a well-established task that holds significant
importance in various applications. FR evaluation scenarios can be broadly
categorized into two types: verification and identification. In both cases, the
similarity between the face images forms the basis for the comparison. To
better adapt to the real-world situations, the training dataset used in face
recognition excludes those identities for evaluation [1].

Recent state-of-the-art (SoTA) FR methods are based on identity, where
face images with labels are used to train a classifier that discriminates be-
tween different identities. However, during evaluation, the classifier is typi-
cally discarded as the identity information learned during training is of little
use for the sample-sample comparison in the evaluation process.

Many existing methods aim to enhance the performance in some specific
subtasks of face recognition, such as low-quality images [2] and variant head
poses [3]. However, these methods are all built upon the foundation of gen-
eral face recognition methods. In order to improve face recognition in the



general situation, a series of identity-based methods using margin [4, 5, 6]
have been proposed to improve the intra-class compactness.However, these
identity-based methods overlook the holistic feature space [7]. Meanwhile,
several other approaches emphasize inter-class separability as a key factor
in achieving feature discriminability by utilizing various loss functions for
regularization [8, 9, 10, 7]. These identity-based methods leverage the classi-
fier’'s weight as a proxy for identities to explore sample-identity or identity-
identity relationships during training. However, during the evaluation which
is sample-based, the identity information in the classifier becomes irrelevant
and the differentiation is based solely on the chosen samples.

As illustrated in Figure 1, the feature distribution in identity-based train-
ing could achieve high intra-class compactness and inter-class separability
with the help of identity proxy features. In the sample-based evaluation, the
classifier is removed and the sample pairs are then used for verification. Ad-
ditionally, the face images used in the evaluation are from different identities
than those used in training. Consequently, the discriminative characteristics
of the evaluation distribution may not be as comparable as those in training.

To address the aforementioned problem, this paper introduces a novel
method called Contrastive Regularization for Face Recognition (CoReFace).
This approach uses contrastive learning to regulate the training process and
ensure that the sample-sample relationship aligns with the evaluation goal,
thus improving the performance of face recognition. Contrastive learning
works by bringing semantically similar samples closer and pushing dissim-
ilar samples away from each other [11]. In the field of face recognition,
class-guided contrastive learning has been explored, where positive pairs are
composed of samples from the same identity. For instance, triplet loss is
applied either solely [12] or jointly [13, 14] with the identity-based classifying
methods. However, with the recent development of identity-based methods,
these approaches could interfere while joint training with other identity-based
methods [15, 6]. On the other hand, sample-guided contrastive learning has
demonstrated promising progress in unsupervised learning [16, 17, 18]. In
this case, positive pairs are formed by applying stochastic data augmentation
on the same image. In our approach, we leverage sample-guided contrastive
learning as a regularization approach to adjust the relationship between sam-
ples so as to learn a more semantic and consistent feature distribution during
training and evaluation.

However, integrating sample-guided contrastive learning with identity-
based methods is non-trivial. First, general face recognition requires a large



number of high-quality images to learn the differences between identities.
The commonly used data augmentations in contrastive learning can hinder
the convergence of FR models [19, 20]. To make sample-guided contrastive
learning applicable to FR, we propose a new pipeline that uses feature aug-
mentation instead of data augmentation to generate positive pairs. Second,
sample-guided contrastive learning is typically designed to be applied exclu-
sively. When jointly trained with the identity-based methods, its effectiveness
becomes insignificant. To address this issue, we make several improvements
to the contrastive loss function to enable the effective regularization. Third,
the scale of the negative sample pool plays a crucial role in contrastive learn-
ing [18, 21, 22, 23]. We further discovere a Semantically Repetitive Signal
(SRS) problem, where certain combinations of samples repeatedly contribute
to the optimization and push the related part of the distribution with an in-
appropriate magnitude. To alleviate this problem, we explore new strategies
of pair coupling in contrastive learning. The main contributions of this paper
are summarized as follows:

e We propose a novel framework that applies regularization in FR using
contrastive learning. Unlike previous methods adjusting feature distri-
bution with sample-identity pairs, our approach utilizes sample-sample
relationships that are consistent between training and evaluation.

e We propose a contrastive loss function that performs effective regu-
larization by incorporating an adaptive margin to strengthen the con-
trastive supervision signal and a supervised contrastive mask to avoid
collisions in joint training.

e We investigate the SRS problem in contrastive learning in situations
with limited negative samples and explore new pair-coupling protocols
to alleviate this problem.

e We perform extensive experiments on widely-used benchmarks to show
the superiority of our proposed framework over existing approaches.

2. Related Works

2.1. Identity-based methods with margin

In recent years, there has been an emerging trend in identity-based meth-
ods using extra margin for face recognition (FR) [4, 5, 6, 24, 25]. They are
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Figure 2: Illustration of the framework of our CoReFace. To address the problem of image
quality degradation, we introduce a feature augmentation module between the backbone
and the FC layer. Our contrastive loss function consists of an adaptive-margin loss and
a supervised contrastive mask. To avoid the semantically repetitive signals, we employ
a new pair-coupling protocol in the similarity computation for contrastive learning. The
contrastive loss regularize the training process based on sample-sample relationships.

also the foundation of multi-modal face recognition [26, 27]. These methods
normalize the representation embeddings of images and classes (or identities)
before their multiplication [28, 29], which degrades the product to the cosine
value of the angle between the two vectors. During training, a margin pa-
rameter is used to increase the distance between the matched sample-identity
pairs and unrelated ones. This promotes the intraclass compactness by min-
imizing the distances between the representations of the images from the
same identity. The normalization alleviates the misguidance of the feature
norm in the Softmax loss by projecting the features onto a hypersphere, while
the margin imposes a strong constraint on the sample-identity feature pairs
on this hypersphere [28]. Although these methods achieve high intra-class
compactness, they fail to fully exploit the holistic feature space [7]. To align
the training with the evaluation process, our CoReFace applies constraints
of the sample-sample relationships during training.

2.2. Feature Regularization in Face Recognition

Feature distribution is the foundation of face recognition evaluation, as
both the two subtasks (verification and identification) rely on feature simi-
larity between face images [4, 8]. To improve the performance of face recog-
nition, some methods introduce additional constraints to adjust the feature



distribution in a holistic manner. These constraints include restricting the
magnitude of representation features [30] and controlling the Euclidean dis-
tance between the representations and the identity weights [8]. Since the
identity weights act as class proxies, previous research suggests that they
can facilitate a holistic feature distribution [31, 9, 7, 10]. By constraining the
energy function, Euclidean distances, or angles between the identity weights,
better feature distributions can be achieved.

However, the methods mentioned above indirectly adjust sample simi-
larities using identity information specific to the training process. Their
effectiveness is primarily observed during training with little assurance of
generalization to the evaluation process where the identities are unknown.
In this paper, we propose a novel contrastive regularization approach by in-
troducing a new contrastive loss within a novel framework. In contrast to
existing methods, our approach directly adjusts the relationship between im-
age features so as to make the training consistent with the evaluation process
and improve the performance of face recognition.

2.3. Contrastive Learning for Face Recognition

Contrastive learning aims to cluster semantic neighbors as distribution
neighbors in the representation space [11]. Class-guided contrastive learn-
ing [12, 28] has been applied to face recognition [12]. It considers samples
from the same class as semantic neighbors. However, it has been shown
to hinder performance in joint training and underperform compared to the
identity-based methods [6, 15]. On the other hand, sample-guided contrastive
methods use data augmentation results to form positive pairs. These meth-
ods typically construct a large negative sample pool for comparison [18, 21,
22, 23|. With extensive datasets and sufficient training, they exhibit promis-
ing unsupervised learning performance. However, applying sample-guided
contrastive learning in face recognition is challenging due to the semantic
damage introduced by commonly used data augmentation techniques [19].
Additionally, avoiding conflicts between the two supervision signals during
training is also a key issue. In this paper, we introduce a new framework
namely CoReFace to address the image quality degradation problem and
maintain the effectiveness of regularization during training. CoReFace in-
corporates feature augmentation to mitigate the semantic damage caused by
data augmentation. Moreover, our contrastive loss utilizes an adaptive mar-
gin to supervise well-performing identity-based methods and incorporates a
supervised contrastive mask to prevent conflicts during joint training. We
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also identify and address the semantically repetitive signal problem by ex-
ploring new pair-coupling protocols in contrastive learning.

3. Methodology

Figure 2 illustrates our CoReFace framework. Sample-guided contrastive
learning is used to regulate the training process with the sample-sample re-
lationships. To tackle the problem of image quality degradation, feature
augmentation is employed instead of data augmentation for positive pair
composition. A novel contrastive loss is proposed by integrating an adaptive
margin and a supervised contrastive mask (SCM). Furthermore, new pair-
ing strategies are developed to handle the issue of ”Semantically Repetitive
Signal” (SRS) in contrastive learning, which distorts the feature distribution
and disrupts the similarity calculation.

Algorithm 1 Pseudo code of our CoReFace loss on Pytorch.
Input: Image features (Hy, Hs) from augmentation channel (oq, 03), iden-
tity labels Y, identity matrix I, momentum parameter «, scale parameter
s, adaptive margin in the last step m¢
Output: CoReFace loss value L&
1: Hy, Hy = normalize(H), normalize(Hz)

SM'[i,Y =YTi]] =0

: neg = SM' .max(dim=1)

9: m = (pos — neg).mean()

10: meg =a-m+ (1 —a)-me

11: SM=SM —m¢ -1

12: Lo = CrossEntropyLoss(SM - s, Ye)
13: return Lo

2: SM = (H, - H) ).clamp(-1, 1)
3 : Yo = range(len(H,))

4: SM'" = SM.clone().detach()
5: pos=SM' -1

6 : for ¢ in Y

7

8

3.1. Feature Augmentation

The image quality degradation caused by data augmentation cannot be
ignored [19, 20]. To address this issue and make sample-guided contrastive
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learning applicable to FR, we propose augmenting the features instead of the
images for positive pair composition. As depicted in Figure 2, we pass the
hidden embedding after the backbone through two dropout channels oy and
oy with distinct masks. Dropout [32] randomly disables certain parts of the
input with a certain probability. It can be viewed as a form of augmenta-
tion between adjacent layers [33, 23]. In our approach, the dropout masks
are randomly generated in every mini-batch and applied to all input sam-
ples. Random noise and linear transformations are another two candidate
for feature augmentation. But they need proper design and both of them
have two variables which make it more difficult to apply them than dropout.
What’s more, dropout does not modify the original input data. This pre-
vents introducing artificial bias that may occur when adding noise or linear
transformations.

By using feature augmentation, we can compose positive pairs for con-
trastive learning while avoiding image quality degradation. Moreover, com-
pared to data augmentation, which is applied to the input sample and passes
the augmented samples through the entire model twice, our feature augmen-
tation operates on the features and reduces computation by almost half.

3.2. CoReFace Loss Function

The identity-based supervision signal could dominate the training as it
takes advantage from the labels, while aggressive regularization that con-
flicts with other supervision signals is also ineffective. Adapting to different
datasets makes these problems even more difficult. To overcome the these
issues, we propose a new contrastive loss function that is both adaptive and
harmonious during joint training. The pseudo code is presented in Algo-
rithm 1. Our CoReFace loss function produces consistent loss values and
considers the identity labels to prevent conflicts with the identity supervi-
sion signal.

Both the sample-guided contrastive loss functions and the identity loss
functions in face recognition are based on the cross-entropy loss function.
The common forms of these two types of losses are as follows:

o5 P(hiWy,)

EC’la = - log s ) n - N (1>
esP(hi;Wy,) | Zj:L#yi o5 Q(hi, W)
- | €Sim(hi,hN+i)/T (2>
Con — — 108 - )
SR Dkl



where P(h;, W,,) and Q(h;, W) are two different functions to modulate
the positive and the negative pair production of the feature h € R W &
R?" is the weight of the classifier with d being the feature dimension and
n being the number of classes, h; and hy,; are obtained from one feature

Th.
= oy s the
cosine similarity, s and 7 are two scale parameters used in the identity loss
function and the contrastive loss function respectively, and 1j;.; € {0,1} is
an indicator function evaluating to 1 iff j # 4.

Adaptive Margin. As the most similar negative pair and the positive
pair influence the decision boundary the most, our contrastive loss updates
the margin m by taking into consideration the difference between their sim-
ilarities. This margin guarantees that the magnitudes of the exponentiated
numerator and the denominator in the softmax function are similar, thus
maintaining a steady loss value. In order to handle extreme data that may
introduce noise, we employ the Exponential Moving Average (EMA) [25].

augmented by different augmentation channels, sim(h;, h;)

Specifically, let mgC ) be the average of the margin of the k-th iteration with
m$ = 0, and let o be the momentum parameter that is empirically set to

0.99. For a pair (h;, h;) where i < j, mg) is updated as:

m(ck) =am® + (1 - a)m(ck*l), (3)
LN

m®) = N ; (sim(h;, hy.;) — Mazneg;), (4)

Mazneg; = max(sim(h;, hj)),j € [1,2N],j # N + 1, (5)

where N is the number of samples. Taking m as the difference between angles
as in ArcFace [6] is also a candidate approach. However, it changes the angle
of the vector pairs directly, which needs to include the triangle function and
increases the complexity of the derivation. This results in a nan value when
being used as the contrastive loss. To sum up, the contrastive loss with
adaptive margin can be formulated as

es(sim(hi JhN4i)—me)

ﬁ() = —log (
€

s(sim(hi,hn4i)—m s-sim(hg,hj) (6)

)t i i gpN+i ©

Supervised Contrastive Mask. In supervised learning, contrastive
methods may contradict the fact that some samples are from the same class
in FR, i.e. y; = y;, whose features should be similar. When cooperating with
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Figure 3: Four types of pair-coupling protocols. Every combination of two augmentation
channels 07 and o9 represents the feature combinations of the images in a mini-batch. If
there are multiple augmentation channel combinations, the feature pairs are duplicated.

the identity loss, the two methods could disturb each other in the interpre-
tation of the supervision signals.

To avoid this conflict between the contrastive regularization and the
identity-based training, we introduce Supervised Contrastive Mask (SCM).
With the help of the labels, we create SCM to exclude the distraction of sam-
ples from the same class. Specifically, we set the similarity score sim(h;, h;)
to 0 for feature pairs where @ < j, 7 # N + 4, and y; = y;.

3.3. Pair-Coupling Protocol for SRS Problem

We uncover a problem known as Semantically Repetitive Signal (SRS),
where some specific negative pairs are excessively emphasized, resulting in a
distorted distribution and abnormal drawing and pulling of the affected fea-
tures. To gain a better understanding of this problem, we have investigated
pair-coupling protocols, which determine how positive and negative pairs are
formed. Figure 3 illustrates four distinct protocols. Let (0; — o) represent
a pair where the first and the second features are from the i-th and j-th mask
channels respectively, where 7,7 € {1,2}. The number of mask channels in
the first position determines whether the pairs are formed in a single or dou-
ble way, while the number of mask channels in the second position affects
the number of negative samples, either N or 2/N.

Figure 4 illustrates the repetition of key negative pairs in a well-trained
identity-based model. Here, the coordinates of a point represent the indexes
of a feature and its most similar negative counterpart within a batch. Points

10



(@) @ € o1 — 02 OO @ 01— 0
240 O O 03— 01 240 O O (@] o1 =% 01
. @ O AP @ 00
(O oy < ( ] /o
f.Po00 o° 2| afom, fo 01T
2 o o
=08 - 9 o a 208 | 00 © o O
E 0 o] % 0 °9Q
g 192 1, Ve © o) a 8 :;: e} ®
. !‘f_} R %e o & LR oo
: B g il ° ‘g &
E1e0p OO O"”'Veg%_ ¢} £ 160 o o O
- 144 ¥ - 144 t:;‘ p:,ﬂ&.m.j *
90 90 8o g @)

128
0

16 32

48

112

Index of Augmentated Feature h;

(a) Most similar neg-pair in D-N protocol

0 16

Lew)

T

32 48

64
Index of Augmentated Feature h;

80

96 112 128

(b) Most similar neg-pair in S-2N protocol

Figure 4: The coordinates of a point are the indexes of a feature and its most similar
negative feature in a mini-batch. o; and o5 denote the augmentation channel. When two
ordered pairs are mirrored, the points overlap and are painted yellow. The blossom yellow
points in (a) and (b) demonstrate the symmetric problem in the ways and the number
of negative samples separately. We further illustrate the SRS problem by including a
descriptive example in each of the two figures. The y-index of (67 — o1) points are
increased by 128.

are colored blue or green according to the feature channels of a pair, while the
overlapping points are colored yellow. For relation (o <+ 03), the most simi-
lar negative feature of h; and h; could be each other. While for (o7 — 01/02),
the most similar negative pair could be (h;, h;) and (h;, h;) when h! is the
corresponding augmented version of h;. It is obvious that many feature pairs
are mirrored as many points are in yellow. The contrastive loss function re-
sults in partially duplicated loss values, which leads to a unexpected example
mining strategy and inappropriate back-propagation throughout the training
process.

To address this problem, we propose a Single-way N Protocol that reduces
the symmetry in the pair-coupling process. Specifically, we only compute
the similarity of (o7 — o02) within a batch and disregard the other three
compositions to eliminate the calculation of extra repeated losses. This may
seem contradictory to the common contrastive learning setting that requires
more negative samples for comparison [18, 21]. However, these methods are
typically supported by complex data augmentations and a large comparison
pool. The stochastic nature of the augmentations and the availability of
abundant candidates provide more possibilities for a given feature. While in
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(a) CASIA-WebFace Dataset (b) MSIMV2 Dataset

Figure 5: Several sample images of training set. (a) CASIA-WebFace dataset for training.
(b) MSIMV?2 dataset for training. Each row represents an identity. These images are the
face crops after face alignment and cropping. MS1IMV2 is a semi-automatically refined
version of the MS-Celeb-1M dataset proposed in [6].

FR, data augmentation is destructive and not employed, and a large batch
size (e.g., 8,192 [18]) is generally not applicable.

Upon the integration of the supervised contrastive mask and the single-
way N protocol, we modify Mazneg; in equation (5) and the contrastive loss
function from equation (6) to equations (7) and (8), respectively. The iden-
tity loss involves processing features h; and hy; through distinct augmen-
tation channels. The entire supervision signal, represented by equation (9),
incorporates both the identity part and the equation (8).

Mazxneg; = max(sim(h;, hj)),j € [N+1,2N],y; # v;, (7)
es(sim(hi,hN_‘_i)fmc)
ECoRe = - 1Og N ) (8)
es(sim(h;,hnii)—mc) + Z es sim(hi,hj)
J=N+1y:#y;
1
L =5 (Lewlhs) + Lowa(bnii)) + ALoore (R Ry ). 9)

4. Experiments

4.1. Datasets

1) Training Data: We use CASIA-WebFace [34] and MSIMV2 [6] for
model training. Specifically, the CASIA-WebFace dataset is applied with

12



(a) IJB-C Dataset (b) FaceScrub Dataset (¢) MegaFace Dataset

Figure 6: Several sample images of the evaluation datasets. (a) IJB-C dataset for evalua-
tion. (b) FaceScrub dataset for evaluation. (c¢) MegaFace dataset for evaluation.

(a) Cross-Age LFW (b) Cross-Pose LFW

Figure 7: Several sample images of the evaluation datasets. (a) Cross-Age LFW dataset
for face verification. (b) Cross-Pose LFW dataset for face verification. The matched
and unmatched pairs are bounded with green and red respectively. Each row in the
colored boxes represents a verification pair. These two datasets are challenging due to
their variations of ages and poses.
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Methods (%) Venue LFW AgeDB CFP-FP CALFW CPLFW
CosFace[5] CVPR 2018 99.81 98.11  98.12 95.76 92.28
ArcFace [6] CVPR 2019 99.83 98.28  98.27 95.45 92.08
MV-Softmax [24]  AAAI 2020 99.80 97.95  98.28 96.10 92.83
CurricularFace [25] CVPR 2020 99.80 98.32  98.37  96.20  93.13
SCF-ArcFace [43] CVPR 2021 99.82 98.30  98.40 96.12 93.16

MagFace [44] CVPR 2021 99.83 98.17 98.46 96.15 92.87
AdaFace [20] CVPR 2022 99.82 98.05 98.49 96.08 93.53
DDC [45] TPAMI 2023 99.8  98.0 98.3 96.0 92.3
FaceT-B [46] TIFS 2023 99.82 98.18  98.23 95.68 92.62
CoReFace Ours 99.83 98.37 98.60 96.20 93.27

Table 1: Verification accuracy (%) on LEW, AgeDB, CFP-FP, CALFW, and CPLFW.
The Best results are emphasized in bold.

ResNet50 for ablation studies while the MSIMV2 dataset is applied for com-
parison with other SOTA methods. CASIA-WebFace contains about 0.5M
face images of 10K individuals, which are originally collected from IMDb by
searching the celebrities’ names. MS1MV2 contains about 5.8M face images
of 85K individuals. The noises and the potential outliers are removed within
each class from the MS-Celeb-1M dataset by a semi-automatic refinement
method. Figure 5(a) and Figure 5(b) show some samples randomly selected
from these two datasets where each row represents an identity.

2) Testing Data: We extensively evaluate our approach on eight bench-
marks, including LEW [1], AgeDB [35], CFP-FP [36], CPLFW [37], CALFW [38],
[JB-B [39], IJB-C [40], and MegaFace [41]. Some examples of CALFW [3§]
and CPLFW [37] are shown in Figure 7 where the positive pairs and the neg-
ative pairs are bounded with green and red boxes respectively. 1JB-B [39]
and IJB-C [40] are used for reliability evaluation. These two datasets pro-
vide tons of face pairs, and most of them are unmatched. They ask for high
accuracies for positive pairs (TAR) when the ratio of mistakes on negative
pairs (FAR) are controlled. We show some examples of IJB-C in Figure 6(a).
The variations on the poses, illuminations, and qualities make these two [JB
datasets quite challenging. MegaFace [41] takes FaceScrub [42] as a probe set
and provides a gallery set that contains 1M images, which makes it a difficult
large-scale dataset. Figure 6(b) and Figure 6(c) show some examples of the
probe set and the gallery set respectively.
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[JB-B(TARQFAR) [JB-C(TARQFAR)

Methods(%) To6  1eb led 16 leb lod
Softmax 1673 7517 90.06 6407 83.68 9240
SphereFace [4] 3940 73.58 89.19 68.86 83.33 9177
CosFace [5] 4041 8925 9401 87.96 92.68 9556
ArcFace [6] 33.68 88.50 94.00 85.65 92.69 95.74
SCF-ArcFace [43] - 90.68 94.74 - 94.04  96.09
Magface [44] 4232 9036 9451 90.24 94.08 95.97

QMagFace [51] - - 94.70 - - 96.19
SphereFace-R [52] 45.64 86.55 94.51 80.19 93.01 95.96

DDC [45] - - 947 - - 96.1
FaceT-B [46] - - 94.37 - - 95.72
CoReFace 47.02 91.33 95.09 8034 94.73 96.43

Table 2: 1:1 verification on IJB-B and IJB-C. The Best results are emphasized in bold.

4.2. Implementation Details

We follow the settings commonly used in recent works [24, 20, 47, 25, 44, 6]
to ensure the fairness of comparison. Multi-task Cascaded Convolutional
Networks (MTCNN) [48] is taken to mark the five face landmarks for face
alignment. The face images are then cropped and resized to 112 x 112. Image
pixels are normalized by subtracting 127.5 and then dividing by 128.

We employ ResNet50 and ResNet100 [49] as backbones for CASIA-WebFace
and MS1IMV?2 respectively. ArcFace is used as the identity loss. Our frame-
work is implemented with Pytorch [50]. We train the models on 4 NVIDIA
A100 GPUs with a batch size of 512. All models are trained using SGD
algorithm with an initial learning rate of 0.1. We set the momentum to 0.9
and the weight decay to 5 x 1074, On CASIA-WebFace, the training finishes
after 40 epochs, and the learning rate is divided by 10 at the 22nd and the
30th epochs respectively. In MS1IMV2, we divide the learning rate by 10 at
the 8th, the 14th, and the 20th epochs, and stop training after 24 epochs. We
set the scale parameter s to 64 for both the identity loss and our contrastive
loss, and set A to 0.05. The possibility of dropout is set to 0.4, following
AdaFace. For a fair comparison of the evaluation results, all methods with-
out specifications are implemented with ResNet100 and MSTIMV2.
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Methods (%) Id Ver

CosFace [5] 97.91 97.91
ArcFace [6] 98.35 98.48
MV-Softmax [24] 97.76 97.80
CurricularFace [25] 98.71 98.64
BroadFace [47] 98.70 98.95
CircleLoss [53] 98.50 98.73
FaceT-B [46] 97.99 97.92
CoReFace 98.69 99.06

Table 3: Face identification and verification on MegaFace Challenge using FaceScrub as
the probe set. Id refers to the rank-1 face identification accuracy with 1M distractors, and
Ver refers to the face verification TAR (@QFAR=1e — 6).

4.3. Ezxperiment Results

1) Results on LFW, CFP-FP, AgeDB, CALFW and CPLFW: Table 1
compares our CoReFace with other recent SOTA approaches on diverse
benchmarks. Compared to the original ArcFace, our CoReFace outperforms
it on four out of the five datasets with remarkable margins and achieves the
same performance on the last one. This improvement is due to the incorpora-
tion of contrastive regularization in CoReFace, which successfully addresses
the inconsistency problem between identity-based training and sample-based
evaluation, which is ignored in previous approaches. Among all the ap-
proaches, AdaFace considers image quality during training. This may explain
its superior performance on CPLEFW, where different poses may cause occlu-
sions on faces and result in lower accuracies. Our method achieves the highest
accuracies on the other four datasets. Notably, while our CoReFace has the
same performance as ArcFace and CurricularFace on LFW and CALFW, it
significantly outperforms them on the other datasets.

2) Results on IJB-B and IJB-C: The 1JB-B dataset contains 1,845 sub-
jects with 21.8K still images and 55K frames from 7,011 videos. The 1JB-C
dataset expands IJB-B, and contains about 3,500 identities with a total of
31.3K images and 117.5K unconstrained video frames. Table 2 shows the
performances of different methods for 1:1 verification on 1JB-B and 1JB-C.
Our method achieves the highest True Acceptance Rates (TARs) for nearly
all False Acceptance Rates (FARs) on these two datasets. As IJB-B has fewer
matches, it becomes the most challenging situation when the FAR is set to
107% and only about 8 negative matches are allowed to be wrong. Com-
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Setting Groups Methods Average
Identity-only  93.60
Triplet-only 91.03

Single Supervision

. NT-Xent 63.61
Contrastive

Only SupCon 67.87

CoReFace 86.68

Data NT-Xent 92.78

Augmentation SupCon 91.49

NT-Xent 93.60

Feature SupCon 93.60

Augmentation Cos m=0.7 93.60

CoReFace 93.75

Table 4: Average verification performance (%) of different methods. All experiments are
based on a pre-trained ResNet50 ArcFace model with 90.45% average performance. To
avoid the influence of the hyper-parameter, A = 1 is set for all experiments.

pared with other methods whose TARs are lower than Softmax, our model is
more competitive under such an extreme circumstance. Furthermore, when
there is a higher FAR bound (e.g., 107%) or the evaluation dataset is larger,
CoReFace still outperforms the competitors.

3) Results on MegaFace: Finally, we demonstrate the efficacy of our
method on the MegaFace Challenge. The gallery set of MegaFace con-
tains 1M images of 690K subjects. We follow [6] to remove the face images
with wrong labels and evaluate our method on the refined dataset. Ta-
ble 3 compares the performances of different methods. For the identification
task, CoReFace achieves competitive performance which is only 0.02% lower
compared to the highest one CurricularFace [25]. For the verification task,
CoReFace outperforms all the other approaches with a clear margin, which
is also the only one that achieves a TAR higher than 99%. Without the need
for complex structure reformations, CoReFace implements an sample-sample
regularization to improve the feature distribution and boost the performance
of large-scale face recognition.

4.4. Ablation Studies

In this section, we conduct detailed ablation studies from four aspects
to demonstrate the effectiveness of our method, including the effects of our
framework and the pair-coupling protocol, the speed, the hyper-parameters,
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Figure 8: (a) The loss variations of different contrastive methods in joint training with
R100. (b) The adaptive margin (m¢) variations caused by CoReFace on different backbone
models. Some methods keep their loss values nearly 0 and fail to supervise in training.

and the feature distribution. As the performance on LEW is almost saturated
(with an accuracy of about 99.8% using the ResNet100 model), we report
the performances on AgeDB, CFP-FP, CALFW, CPLFW, and their average
in our ablation studies.

1) Effects of our framework: In Figure 9, three different frameworks are
evaluated: Original, w/o L¢, and w/ Le. Original refers to the traditional
identity-based framework, while the latter two settings adopt our framework.
Experiments on the identity-based methods, CosFace, and ArcFace demon-
strate the effectiveness of our CoReFace loss. Dropout also has a positive
influence on the average performance.

Table 4 compares the effectiveness of our contrastive loss function with other
alternative methods in various settings. It is observed that the Contrastive
Only group performs inferiorly compared to the identity-based methods, in-
dicating the importance of incorporating the identity loss into face recogni-
tion tasks. The most commonly used contrastive loss function NT-Xent [18]
and the label-guided SupCon [54] are taken for comparison. The perfor-
mance degradation of them in the Data Augmentation group, compared to
the Identity-only method, confirms the semantic damage caused by com-
monly used image augmentations. The Feature Augmentation group, which
follows our framework and utilizes CoReFace, shows significant improvement,
while the other methods have little effect. Notably, we set A = 1 to prevent
hyperparameter disturbance, and the improvement of our method becomes
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Figure 9: Average verification performance (%) of CosFace and ArcFace. The Original
implementation takes no dropout or contrastive loss. w/o L¢ takes the same setting as
our framework but our contrastive loss.

more significant after parameter selection.

Figure 8 further visualizes the contrastive loss values and the adaptive margin
me during joint training, demonstrating that our method generates stable
and reasonable loss values with the aid of the adaptive margin. Figure 8
shows how other contrastive methods fail to provide consistent supervision.
The change in m¢ with different backbones confirms the adaptability of our
method, relieving the need for tedious hyperparameter tuning for different
model scales and the ability of our contrastive loss to effectively enhance the
difference between the similarities of positive and negative pairs.

The efficacy of our supervised contrastive mask (SMC) is illustrated in Fig-
ure 10. The findings suggest that the masked version consistently outper-
forms the unmasked version. Despite some conflicting situations caused by
the stochastic sampling during training, the mask effectively resolves the
supervision conflicts between the two signals.

Figure 10 also demonstrates the impact of various pair-coupling protocols.
Among the four protocols, the D-2N protocol, D-N protocol, and S-2/N pro-
tocol include repeated key negative pairs. The D-2N protocol exhibits lower
average performance due to a higher number of negative pairs. The single-
way N protocol performs better than the others. This supports our assump-
tion that symmetry in pair coupling hinders the performance.

2) Ablation on speed: Figure 11 provides a comparison of the training
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Processing Time For Different Methods with R50 and R100
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Figure 11: Average processing time for a sample with each method on one NVIDIA A100
GPU. (a) Processing time using CASIA-WebFace as training set with ResNet50 as the
backbone. (b) Processing time using MSIMV2 as training set with ResNet100 as the
backbone. “T-” means triplet loss variations. R100 with original triplet loss needs more
than 40GB video memory and fails to be trained. Our CoReFace shows considerable
efficiency that is almost the same as the original structure.

20



Augmentation Type | AgeDB CFP-FP CALFW CPLFW | Average
no 95.08 95.67 93.72 89.93 93.60
random noise (0.005) | 94.90 95.38 93.78 90.23 93.58
random noise (0.01) | 94.98 95.53 93.92 90.25 93.67
random noise (0.03) | 94.85 95.36 93.82 90.12 93.54
scaling (0.01) 94.77 95.41 93.95 90.17 93.57
dropout (0.4) 95.03 95.50 93.92 90.53 93.75

Table 5: The effects of different feature augmentations. The numbers in the parentheses
represent the standard deviation for random noise, scaling factor for scaling, and the
probability of discard for dropout.

speed among different frameworks: the original identity-based framework,
our feature-augmentation-based CoReFace framework, the data-augmentation-
based Contrastive framework, and the Triplet frameworks. The speed is re-
ported for a batch size of 128 for Original, CoReFace, and Contrastive frame-
works. We also consider three situations for triplet loss, which calculates one
loss value using three images. To make the samples in a batch generally
equal, we shrink the batch size of triplet loss to 42 and it possesses a similar
number of samples compared with other methods, namely Triplet-Shrunken.
We then randomly take the negative samples from the whole dataset with a
Triplet-Shrunken batch and name it Triplet-Random.

As shown in Figure 11, our CoReFace framework only incurs negligible ex-
tra time, i.e. 1.4%0 for R50 and 3.3%0 for R100, compared to the origi-
nal identity-based method. In contrast, the common Contrastive framework
nearly doubles the processing time. Triplet-Original, which uses a batch size
three times larger than Original, is faster for a single sample with R50 and
CASTA-WebFace, but cannot be applied on a GPU with 40GB memory for
R100 and MSIMV2. Triplet-Shrunken addresses the memory explosion issue,
but still faces challenges with the negative sample selection which is time-
consuming. Triplet-Random does not have these problems, but lacks control
over the selection of negative samples. It performs similar to a degraded ver-
sion of the Contrastive method, contributing positive pairs and potentially
wrong negative pairs.

3) Ablation on different types of feature augmentation: Table 5 shows
the effects of different feature augmentation methods. To simplify the design,
random noise is a tensor generated from a normal distribution A that is the
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A AgeDB CFP-FP CALFW CPLFW Average

0.01 98.23 98.51 96.20 93.12 96.52
0.03 98.37 98.60 96.20 93.17 96.58
0.05 98.37 98.60 96.20 93.27 96.61
0.07 98.17 98.59 96.17 93.12 96.51
0.1 98.32 98.63 96.25 93.17 96.59
0.2 98.30 98.49 96.20 93.10 96.52

Table 6: Verification performances (%) with different A.

Model CALFW CPLFW
ArcFace CoReFace Diff.  ArcFace CoReFace  Diff.
R50 + 1322.0 1456.0 110.1% 961.4 1172.4 121.9%
— 99.4 93.0 16.6% 73.7 78.6 16.6%
R100 + 1769.1 1744 .2 11.4% 1417.7 1380.5 10.4%
— 27.0 26.9 12.6% 13.4 11.9 111.2%

Table 7: The similarity scores of ArcFace and CoReFace on CALFW and CPLFW with
different backbones. + and — denote the positive pairs and the negative pairs respectively.

same size as the features. Linear transformation is achieved by randomly
scaling according to the scale from normal distribution N;. The means are
both 0. The standard deviation are controlled by parameters. The gener-
ated random noise is scaled by the magnitude of the feature ||h|| and added
to the original feature h, while the scaling scale factor is multiplied by the
original feature h and then added. As shown in the Table 5, when the stan-
dard deviation scale is set to a small value (0.01), the average performance is
lower than the original method. For random noise, it performs better than
the original method within a small range of standard deviation, requiring
careful hyperparameter tuning to achieve good results. Meanwhile, dropout
outperforms these two feature augmentation methods. It is noticeable that
the probability 0.4 for dropout is not from hyperparameter selection, but
rather directly inherited from AdaFace. Dropout not only has an impact on
the data but also acts as a regularization on the model structure. It is simple
and effective without changing the input.

4) Ablation on the effects of hyper-parameters: A larger A\ value re-
sults in stronger regularization, and forces the features to be more separated.
However, this may contradict the intrinsic similarity of face images. Table 6
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Figure 12: The angle distributions of ArcFace and CoReFace on four datasets training
with CASTA-WebFace and R50. + and — denote the positive pairs and the negative pairs
respectively.

presents the verification performances with different values of \. The aver-
age performance remains relatively steady within the selected range. This
indicates that our method is insensitive to the hyper-parameters. Based on
the experimental results, we choose A = 0.05 as our final training setting.

5) Effects on feature distribution: To better understand the impact of
our approach on feature space, we visualize the distribution of similarities
between the positive and the negative pairs in the evaluation datasets. As
seen in Figure 12, the angles of the positive pairs in CoReFace are closer
to 0 compared to ArcFace, maintaining a clear margin across datasets with
age and pose variations. Furthermore, we show the feature distribution of
some randomly selected unseen identities with t-SNE [55] in Figure 13. It
illustrates that the feature clusters generated by our CoReFace are more se-
mantically separated. This demonstrates the ability of our method to adjust
the feature distribution.

We further investigate how CoReFace changes the similarity distribution by
summing up the similarity scores of two methods on datasets with differ-
ent backbones. Each of CALFW and CPLFW contains 3,000 positive pairs
and 3,000 negative pairs respectively. We find that CoReFace changes the
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Figure 13: Visualization for the feature distribution with t-SNE. We show the indexes of
the randomly selected unseen identities.
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Figure 14: Examples of the difference between ArcFace and CoReFace with R50 as back-
bone. The label and the similarity subtraction are placed on the top of a pair. The
similarity scores of the two methods are put in the middle of a pair. If CoReFace has a
proper change in similarity on the basis of the pair label, it will be painted green. Other-
wise, we show it in red. The samples in (a) and (c) are from the intersection of 15%~25%
of the similarity distributions of the two methods, while those in (b) and (d) are from the
intersection of 75%~85% of the similarity distributions of the two methods.
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similarity distribution differently on R50 and R100. We observe different
changes in the similarity distribution for R50 and R100 as shown in Table 7.
Compared with ArcFace, the subtraction of the similarity score summation
on the positive pairs and the negative pairs is increased by more than 15%
on CALFW and CPLFW with R50 as the backbone. This demonstrates the
effectiveness of re-distribution with our method on a relatively small model.
For R100, the model’s representation ability is already strong enough, but
our method still imposes greater penalties on the negative pairs.

Figure 14 displays the face image pairs and the similarity scores of them
computed by ArcFace and CoReFace. The images are from the intersection
of the same similarity distribution segments of the two methods, with the 20
pairs showing the largest absolute values of the subtraction. For the sam-
ples where CoReFace has smaller scores, both methods have low accuracies.
The main difference is that our method produces more and lower negative
scores. However, for another group of samples where CoReFace has larger
scores, our approach shows an angular margin on all the pairs. This implies
that our method shows better discrimination ability. Generally, CoReFace
demonstrates its superiority in dealing with pose and age variations.

5. Conclusion

We have presented our CoReFace to regulate the feature distribution
based on the sample-sample relationship and align the training with the
evaluation in face recognition. This is achieved by integrating sample-guided
contrastive learning in our framework. To address the degradation caused by
the commonly-used data augmentations, we augment the embeddings instead
of images for positive pair composition in contrastive learning. By incorpo-
rating an adaptive margin and a supervised contrastive mask, our contrastive
loss generates steady loss values and avoids collision with the identity super-
vision signals. Additionally, the new pair-coupling protocol alleviates the
similarity problem caused by the symmetry of pairs. Extensive experiments
on the popular face recognition benchmarks and ablations demonstrate the
effectiveness and efficiency of our proposed approach and highlight the great
potential of contrastive learning for regularization in face recognition. Our
concise framework allows for an easy application to existing FR methods.

Limatations and future work: Although using dropout at the end of the
CNN backbone for feature augmentation reduces forward propagation time
by nearly half, it also limits the diversity compared to data augmentation.
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This limitation restricts the potential of contrastive learning. Furthermore,
if we could learn augmented images, face recognition in low-quality scenarios
would greatly benefit. A new backbone-only approach that uses augmented
images and contrastive learning to improve low-quality face recognition is
worth exploring.
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