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摘摘摘要要要—

THE quality of a face crop in an image is decided by
many factors such as camera resolution, distance, and

illumination condition. This makes the discrimination of face
images with different qualities a challenging problem in realistic
applications. However, most existing approaches are designed
specifically for high-quality (HQ) or low-quality (LQ) images, and
the performances would degrade for the mixed-quality images.
Besides, many methods ask for pre-trained feature extractors
or other auxiliary structures to support the training and the
evaluation. In this paper, we point out that the key to better
understand both the HQ and the LQ images simultaneously is
to apply different learning methods according to their qualities.
We propose a novel quality-guided joint training approach for
mixed-quality face recognition, which could simultaneously learn
the images of different qualities with a single encoder. Based on
quality partition, classification-based method is employed for HQ
data learning. Meanwhile, for the LQ images which lack identity
information, we learn them with self-supervised image-image
contrastive learning. To effectively catch up the model update and
improve the discriminability of contrastive learning in our joint
training scenario, we further propose a proxy-updated real-time
queue to compose the contrastive pairs with features from the
genuine encoder. Experiments on the low-quality datasets SCface
and Tinyface, the mixed-quality dataset IJB-B, and five high-
quality datasets demonstrate the effectiveness of our proposed
approach in recognizing face images of different qualities.
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I. INTRODUCTION

Existing face recognition (FR) methods have achieved

near-perfect performances on high-quality (HQ) face im-

ages [1]–[3]. However, their performances significantly

degrade when being applied to low-quality (LQ) images.

Some methods aim to improve performance in specific

image domains, such as light field images [4] and near-

infrared images [5] and hard to be applied to general LQ

images. Some other works focus on the face recognition

where LQ images are adopted for the matching between

the given probe images and the gallery images [6]–[11].

However, due to the domain gap between the HQ and

the LQ images, the discriminability for HQ images is

somewhat reduced. It is hard to effectively learn from both

the LQ and the HQ images simultaneously. In reality, the

quality of a face image used for recognition is influenced

by numerous factors such as camera resolution, distance,

occlusion, and illumination condition. For instance, a high-

resolution smart phone camera could produce low-quality

face crops when there are too many faces in the picture or

the photographer focuses on the scenery in the background.

Meanwhile, in the surveillance situations, the image quali-

ties also vary when the distance is changing (the setting

in SCface [12] dataset). Domain gaps also exist among

these low-quality images. In some limited situations where

the image qualities are fixed, it is possible to select the

proper model according to the image qualities. However,

for the applications such as photo albums and complicated

surveillance systems with various cameras, the qualities of

face images vary a lot. Existing methods only focusing on

either HQ or LQ images are not suitable for such scenarios.

The problems with the mixed-quality face recognition
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using a single feature extractor lie in the following aspects.

First, due to the domain gap between the HQ and the LQ

data, it is hard to learn from and inference with images of

different qualities simultaneously. Most existing methods

emphasize either the HQ or the LQ images, while miss the

other one. Some quality-invariant methods [9]–[11], [13],

[14] attempt to understand the LQ images with the guidance

of a pretrained HQ model. This explicitly teaches the

model to lean to the LQ images and thus the performance

degrades for the HQ images. Besides, as the HQ images

are encoded by a fixed model, the compromise between

images of difference qualities is also under-optimized.

Second, we argue that there is a semantic problem when

applying classification-based method on the LQ images.

The identities of faces are hard to predict due to the natural

variations of their poses, ages, and makeups for the HQ

images. Compared with the HQ images, the LQ images

typically have fewer details, which makes it challenging for

the model to accurately classify them. This confusion arises

because the model may struggle to differentiate between

natural variations in the images and disturbances caused

by the lower image qualities. As a result, the LQ images

usually stumble the performance of the feature extractor

trained with the classification loss [15].

To address the above problems, we propose a novel

approach namely quality-guided joint training for mixed-

quality face recognition (QGFace). Our goal is to learn

both the HQ and the LQ face images simultaneously, and

recognize face images without distinction of qualities with

a single feature extractor. To effectively utilize the data of

different qualities, we design a quality partitioning strategy

and apply different supervision signals according to the

qualities of the images. Specifically, for the HQ images,

the classification-based method is applied as they have

achieved near-perfect performance for face recognition [1],

[2], [15], [16]. For the LQ images which could mislead

the classification loss, we adopt self-supervised contrastive

learning which learns the face images at the instance

level and alleviates the requirements for the image details.

By purposefully taking advantages of the classification

methods and the contrastive learning, we get an encoder

which is applicable for images with different qualities.

Furthermore, with the joint training strategy, we only need a

single feature extractor during training and evaluation. This

makes our method highly extensible, which could serve as

the base component for future works.

Nevertheless, taking contrastive learning from the un-

supervised learning into the joint training scenario is non-

trivial. Face identification asks for searching the related

identity of a given image. Classification-based methods

contain thousands of image-identity pairs to learn discrim-

inative features which could meet the above requirement.

For contrastive learning, it usually takes a large number

of sample pairs to improve the stability and the accuracy.

Momentum queue is a common choice [17]. It generates

representations by an extra encoder which is momentum-

updated with the training encoder. However, it loses track

of the model which is also guided by the classification

supervision signal, and the produced features are whitened

as the encoder keeps average of all the past model statuses.

Inspired by BroadFace [18], we propose a novel proxy-

updated real-time contrastive queue to supply positive pairs

from the genuine model with a large number of negative

samples which is dynamically updated. The proxy is rep-

resented by the corresponding weights of an identity in the

classifier.

The contributions of this paper are summarized as

follows:

• We propose a quality-guided joint training strategy

for face recognition (QGFace) on the mixed-quality

images. To better understand the LQ images which

could mislead the classification methods, we partition

the images into the HQ and the LQ subsets. Clas-

sification loss and contrastive loss are then applied

on the two subsets respectively. In this way, we can

comprehensively learn from both the LQ and the HQ

faces to train a single encoder.

• To support the feature search in face identification, we

propose a proxy-updated real-time contrastive queue to

ensure the discriminability of the LQ images learned

by contrastive learning. The identity proxy represen-

tations are taken to update the queue features encoded

in the previous training step.

• We conduct extensive experiments on high-quality,
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图 1. Conventional pure classification method vs. our QGFace. (a) An FR training pipeline with a single classification loss. All the input images are taken into a single

main loss. (b) Our pipeline additionally takes contrastive loss for low-quality images. We apply data augmentation on images and split their features into two parts:

HQ and LQ ones. The HQ images are supervised by the classification loss, while the LQ images and their related HQ images are sent into the contrastive function.

The gradient flow of HQ data is stopped in contrastive learning. A real-time queue is designed to provide an effective feature queue and support the large-scale feature

comparison.

low-quality, and mixed-quality datasets. Our approach

achieves competitive results on different categories of

datasets compared with the SOTA methods, which

demonstrates the effectiveness of our QGFace.

II. RELATED WORKS

A. Encoder-only methods

Data augmentation is often employed to produce LQ

images since they can provide similar domain information

as the LQ evaluation datasets [9]–[11]. However, these on-

the-fly augmentation methods usually degrade the discrim-

inability of the images and make them hard to be identified

in model training. Recent works discover the relationship

between the feature norm and the image quality [15], [19].

With the awareness of image qualities, the loss functions

are designed to assign different importance to the images

according to their qualities. They attempt to improve the

performance on the LQ images while keeping the high ac-

curacy on the HQ images. Nevertheless, the incompatibility

between the LQ data and the classification training process

prohibits the encoder from effectively learning the hard

LQ images. PENB [20] forces the alignment between the

distribution of LQ and HQ data in a global view, which may

suffer from such a problem. Instead of learning LQ data

with classification-based method, we introduce contrastive

learning to better understand them with the instance-level

supervision. Furthermore, by quality partitioning, we can

prevent the LQ images from misleading the classification-

based HQ learning.

B. Quality-invariant Methods

To deal with the domain gap between the LQ and

the HQ face images, some methods attempt to transfer

the knowledge from the teacher model trained with the

HQ images to the student model which focuses on the

LQ images. In [10], [11], a pretrained teacher network is

frozen and then the student network is trained to extract

features similar to the teacher with the down-sampled HQ

images. TCN [9] takes a contrastive loss to constrain the

relationship between the HQ and the LQ images. RAN [13]

proposes multi-resolution Generative Adversarial Networks

(GAN) to synthesize the cross-resolution images and a

feature adaption network to enhance the communication

between the feature extractors for the HQ and the LQ

images. DDL [14] splits the data into two subsets according

to the predefined semantic difficulty including yaw, race,

and distance during image capture. A similarity-based KL-

divergence loss is applied on the two subsets.

These methods pursue the knowledge transfer from the

HQ to the LQ images. However, with such a single-way

learning process, the performances of the learned models

on the HQ images are stumbled. Our QGFace partitions

the training data according to their qualities and applies

different supervising methods on them, which not only suits
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for the LQ face recognition, but also keeps the ability of

recognizing the HQ images.

C. Synthesis-based Methods

To generalize the high performance of existing high-

quality face recognition to different qualities, two straight-

forward ways are to super-resolve the LQ images for

recognition [6]–[8], [21] and to synthesize meaningful

multi-quality training data. As they can only learn the

mapping between the artificially down-sampled images and

the original one, the training of generation model usually

needs a well-trained feature extractor. In [6]–[8], [21]–

[25], a pretrained feature extractor is taken to supervise

the identities of the synthetic images. In [26], a GAN

is trained to learn how to downgrade the high-resolution

images to generate realistic low-resolution images. In [27],

a DCR model is taken to reserve the identity information,

while in [28], [29] the network structure is modified to

improve the generation quality. Owing to the absence of

large-scale labeled LR face datasets, the approaches in [30],

[31] synthesize low-quality images from the high-quality

dataset and make it possible to train a mixed-quality FR

model. [24] only focuses on a specific type of LQ images

which is the partial face images. [25] reconstructs the HQ

face images with singular value decomposition to improve

the reliability.

These methods could obtain satisfactory HQ images

to mitigate the effect of resolution difference or lead the

model to learn to discriminate LQ face images. However,

as an extra generative module is needed, the overall frame-

work is not end-to-end and computationally expensive.

Besides, a well-trained feature extractor is still needed

in these methods, which highly dominates the training

of the synthesis-based model and the performance of the

recognition process. By directly training a single feature

extractor which is applicable to both the HQ and the LQ

data in an end-to-end way, our method is more elegant and

orthogonal with the synthesis-based methods.

III. METHOD

Fig. 1(b) illustrates the framework of our quality-

guided joint training for mixed-quality face recognition.

We first partition the features into HQ and LQ subsets

according to the image qualities, and learn them with

classification loss and contrastive loss respectively. Then,

we propose a proxy-updated real-time contrastive queue to

support the face identification among LQ images.

A. Quality Partitioning

Considering the domain gap between the HQ and the

LQ images, we partition the mixed-quality images into LQ

and HQ subsets during training. In [15], [19], it is found

that the feature norm is highly correlated with the image

quality. In our approach, we use the feature norm as the

quality indicator for data partitioning.

Let zi denote the norm of the feature hi, and µz,

σz denote the mean and the standard deviation of z

respectively. With these statistics, we could approach the

normalized distribution of z.

ẑi =

⌊
zi − µz

σz/c

⌉1

−1

, (1)

where c is a scale parameter to keep most values of ẑ

fall in (-1,1). The gradient flow of ẑ is stopped during

backpropagation to keep the norm from being optimized

directly.

We partition the input mixed-quality data into HQ and

LQ subsets based on the quality indicator ẑ using a quality

threshold b. Classification loss and contrastive learning

are then applied for the HQ and the LQ feature learning

respectively. We define dependent but different quality

partitioning strategies for these two methods according

to their inherent properties. For classification loss Lclass,

each HQ feature is processed individually. We apply the

quality comparison on the features in the same way, i.e.

the features with quality indicator ẑi higher than b are

fed into the classification loss. Contrastive loss Lcontra

focuses on the relationship between sample pairs. We take

the representations of the augmented image and the original

one as a positive contrastive pair (q, k) for learning. We

define the quality indicator of the p−th positive pair as the

lower one of its two components. The pairs whose quality

indicators are lower than the quality threshold b are fed
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into the contrastive learning. Specifically,

ẑp = min(ẑqp, ẑ
k
p ), (2)

Lclassification =

{
Lclass, ẑi > b

0, else
, (3)

Lcontrastive =

{
Lcontra, ẑp ≤ b

0, else
, (4)

L = Lclassification + Lcontrastive. (5)

The outcomes of the two kinds of losses after quality

partitioning are denoted as Lclassification and Lcontrastive

respectively. We take their summation L as the final loss.

B. Quality-guided joint training

The quality-invariant methods learn the LQ informa-

tion from the corresponding features of the HQ images

encoded by a pretrained model, and apply contrastive loss

or the KL-divergence loss on all data. Different from

them, we guide the model to learn the HQ and the LQ

images simultaneously by applying classification loss and

contrastive learning on different features according to their

qualities. In this way, the supervision compromise between

the HQ and the LQ features is minimized, and we can

make full use of images with different qualities to train

the encoder for the mixed-quality face recognition task.

During the evaluation process, these two loss functions and

their related structures will be dropped, and only a single

feature extractor is reserved which can process images

without distinction of qualities to enable mixed-quality face

recognition.

1) Classification loss for HQ features: Margin-based

softmax loss functions are widely used in face recognition

and have achieved SOTA performances on the HQ evalu-

ation datasets [1]–[3]. This kind of methods add a margin

parameter to enlarge the distance between the matched

image-identity pair and the unrelated ones to discriminate

between different identities. Their loss could be shown as:

L = − log
es·f(hi,W yi

)

es·f(hi,W yi
) +

∑n
j=1,j ̸=yi

es·f ′(hi,W j)
, (6)

where f(hi,W yi
) and f ′(hi,W j) are two different func-

tions to modulate the positive and the negative pair produc-

tion of the feature h ∈ Rd, yi denotes the corresponding

identity of hi, W ∈ Rd×n is the weight of the classifier

with d being the feature dimension and n being the number

of classes, and s is a scale parameter.

AdaFace [15] introduces two norm-related margin pa-

rameters gangle and gadd to leverage the quality indicator

with a predefined static margin m, where

gangle = −m · ẑi, (7)

gadd = m · ẑi +m, (8)

fAdaFace(hi,W yi
) = cos(θyi

+ gangle)− gadd, (9)

f ′
AdaFace(hi,W j) = cos(θj). (10)

With further analysis on the gradient equations of L,

a gradient scaling term (GST) g could be extracted to

understand the effects of the cross-entropy softmax-based

loss functions,

P (i)
yi

=
exp (f (cos θyi

))

exp (f (cos θyi
)) +

∑n
j=1,j ̸=yi

exp (s cos θj)
,

(11)

g :=
(
P (i)
yi

− 1
) ∂f(cos θyi

)

∂ cos θyi

, (12)

where P
(i)
yi denotes the probability of an input xi on its

target class yi. After substituting Equations 9 and 10 into

Equation 6, we get the AdaFace loss which is taken as our

classification loss Lclass for the HQ feature learning.

2) Contrastive learning for LQ features: Although

classification-based methods achieve SOTA performances

on HQ face recognition, they are not suitable for learning

LQ images. Fig. 2 visualizes the GST of AdaFace. It

is obvious that LQ images gain more attentions during

training. However, due to the low qualities, they lack the

discriminative information for matching with thousands of

abstractive identity features. To alleviate this problem, we

apply contrastive learning on LQ features, which is based

on the similarity between image instances and is more

practical for learning the LQ data.

To comprehensively learn the LQ images and compose

the positive contrastive pairs, we apply data augmentation

on the HQ training images. Different from the popular

contrastive methods which apply data augmentation on

the images twice to compose the positive pairs, we only

augment each image once to compose the pair with the

original image. Also, we stop the gradients of HQ images
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图 2. Illustration of contrastive learning for the LQ features. The distance between

a data point and the origin denotes its feature norm. The GST shows that AdaFace

puts a lot of attentions on the low-quality samples. The classification process

matches the images with the abstract identity proxies, which is challenging when

learning with the LQ data. We take the instance-level contrastive learning as shown

in (a) on these images to relieve the learning burden.

during training to keep the qualities of their features. Let

(xq,xk+) denote the augmented image and the original

image respectively, and (hq,hk+) denote their features

which compose a positive pair in contrastive learning.

Different augmentation methods are used including

scaling (down-sampling to a lower resolution and then

up-sampling to the original size), crop & random resize,

rotation, and color distortion. AdaFace introduces hard data

augmentations with low possibilities including cropping

20% of the original image, which make the augmented

images unrecognizable. This might be acceptable when

little emphasis is put on these data, but is not suitable in our

situation where all LQ features are used for learning. We

increase the possibility of data augmentation with lower-

level distortion. In addition, we follow [6] to add JPEG

compression artifacts to make the augmented images more

realistic.

Finally, to make the above two learning paradigms

better cooperate with each other, we employ the Supervised

Contrastive Mask (SCM) introduced in CoReFace [32].

The pair-guided contrastive learning may push two features

away as they are not generated from the same image, while

the classification method tries to pull them together as

they are from the same identity. To address this conflict,

SCM removes all samples with the same identity of the

given image from the negative feature pool. Let θqk, y+

denote the angle between feature pairs and the label of the

given image respectively, and Q, kj denote the number of

negative samples and the jth feature among them. With a

scale parameter s, the contrastive loss can be formulated

as

fcontra(h
q,hk) = cos(θqk). (13)

Lcontra = − log
es·fcontra(h

q,hk+ )∑Q
j=1 1[yj ̸=y+]es·fcontra(hq,hkj )

. (14)

C. Proxy-Updated Real-Time Queue

Self-supervised contrastive learning usually needs a

large comparison pool to serve as the negative candidates

and push the training samples away from them. MoCo

[17] defines the self-supervised contrastive learning as the

comparison with a queue. A slowly progressing momentum

encoder is proposed to produce keys and save them in a

queue. The queries are produced by the training encoder.

To make the positive and the negative keys comparable, all

of them are produced by the momentum encoder. However,

this operation prevents the training encoder from learning

the LQ and the HQ image simultaneously as one of them

is sent into a gradient-free encoder. Furthermore, as the

momentum encoder is designed to be stable during large

training intervals, this could lose track of the status of the

encoder in joint training and produce whitened features.

To relieve the above problems, we propose a novel

proxy-updated queue for contrastive learning, which is il-

lustrated in Fig. 3. We take the genuine features encoded by

the training model as the positive pairs. Since the training

target of the cross-entropy softmax loss could constrain the

corresponding feature-proxy pair to be similar, we update

the negative features with their related proxies. Thus, we

build a feature queue and a proxy queue. Specifically, we

first encode all the original images and the augmented ones.

Then, we update the feature queue and the proxy queue

with the above features and their corresponding identity

proxies. As the features in queue could be generated from

several iterations ago, we update them to be similar to

the features generated by the training encoder. They are

added with the difference between the proxies in queue

and the proxies in training. To provide a mixed-quality

queue, we take both hq and hk to update it. With SCM,

the comparisons between the identical features will not be

introduced.

The cross-entropy softmax loss calculates the similar-

ity between a feature and all of the identity proxies. To
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图 3. (a) The updating process of our proposed proxy-updated real-time queue; (b) The difference between the positive and the negative pairs with different queues.

The momentum queue faces a strongly limited boundary with the steady and whitened features. With our queue, contrastive learning can take the features from the

training encoder to compose the positive pairs.
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图 4. (a) Examples from the training dataset VGGFace2. Each row represents an identity. Identities are randomly selected from the dataset. (b) Examples from the

high-quality dataset CALFW. The positive and the negative pairs are bounded with green and red. (c) Examples from the mixed-quality dataset IJB-B. (d) Examples

from the low-quality dataset Tinyface. These face crops are generated from real images and very challenging.

provide a comparative magnitude of the pair relationship

supervision, we set the size of the queue Q as the number of

the identities n. Thus, the number of pair comparison used

for contrastive learning keeps large in training. This enables

the contrastive learning to discriminate among more images

of mixed qualities for more effective learning.

IV. EXPERIMENTS

A. Datasets and Implementation Details

Datasets. We take VGGFace2 [33] as the training

dataset. We evaluate our approach on three categories

of datasets for different tasks. The first category is the

HQ datasets including the widely-used LFW [34], AgeDB

[35], CFP-FP [36], CPLFW [37], and CALFW [38]. The

second category is the LQ datasets including SCface dataset

[12] and Tinyface dataset [23] which are usually used

for the cross-resolution face recognition and the LQ face

recognition respectively. SCface contains 130 identities

captured by five surveillance cameras from 3 distances:

4.2m (d1), 2.6m (d2), and 1.0m (d3) for each identity. At

each distance, the LQ images need to be matched with the

HQ gallery images of the corresponding identities. Tinyface

contains 5K identities with 153.5K distracting images.

The images in the gallery and the probe sets are of low

resolution. This setting and the natural LQ property make

it a challenging dataset. For the third category, we choose

IJB-B [39] as the mixed-quality dataset which contains

about 1.8K identities with a total of 21.8K images and
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表 I

ABLATIONS OF OUR PROPOSED FRAMEWORK. “HQ AVG.” DENOTES THE AVERAGE PERFORMANCE ON THE FIVE HQ DATASETS LFW, AGEDB, CFP-FP, CALFW,

AND CPLFW. RANK-1 ACCURACY IS REPORTED FOR SCFACE AND TINYFACE. TAR@FAR=10−4 IS REPORTED FOR IJB-B DATASET.

Setting Augmentation
Quality Contrastive SCface

Tinyface IJB-B HQ Avg.
Partition Learning d1 d2 d3

Baseline ✗ ✗ ✗ 61.69 97.23 99.85 63.98 90.26 95.62

A AdaFace ✗ ✗ 66.77 99.08 100.0 67.49 74.07 95.76
B AdaFace ✓ ✗ 68.15 98.46 100.0 67.03 70.45 95.73

C AdaFace ✓ ✓ 70.92 98.62 99.69 66.58 90.59 95.71

D Ours ✗ ✗ 88.62 99.23 100.0 68.80 89.50 95.46

E Ours ✓ ✓ 92.31 99.54 100.0 69.85 91.05 95.43

55K unconstrained video frames. In the 1:1 verification

task, there are about 10K positive matches and 8M negative

matches. Examples of these datasets are shown in Fig. 4.

Implementation Details We follow the settings com-

monly used in recent works [15], [18], [19], [40], [41] to

crop and resize the face images to 112 × 112 with five

landmarks [1]. ResNet34 [42] is employed as the backbone

model. We take AdaFace as the classification loss. Our

framework is implemented in Pytorch [43]. We train the

models on 4 NVIDIA A100 GPUs with a batch size of

512. All models are trained using SGD algorithm with an

initial learning rate of 0.2. We set the momentum to 0.9 and

the weight decay to 5× 10−4. The learning rate is divided

by 10 after the 6th and the 9th epochs, and the training

stops after 12 epochs. The margin parameter m is set to

0.4 as in AdaFace. We set the scale parameter s to 64 for

both the classification loss and the contrastive loss.

B. Ablation on different training strategies

We investigate the effectiveness of the data augmen-

tation strategy, the quality partitioning strategy (QP), and

the contrastive learning (CL) with different categories of

datasets in Table I. We demonstrate the effectiveness of

our method on the LQ and the HQ datasets, and its gener-

alizability to the mixed-quality dataset by jointly learning

the LQ and the HQ data simultaneously with the guidance

of image quality.

Baseline model: We use the plain ResNet [42] model

with AdaFace [15] loss function as our baseline. No aug-

mentation is used except for the random horizontal flip.

Setting A: To show the influence of the LQ data, we

apply the data augmentations recommended in AdaFace,

图 5. Examples of the image pairs. Every two columns show several pairs of

original images and the augmented images. The pairs in red box contain LQ images

while the pairs in green box are all HQ images. Our quality partitioning strategy is

capable of distinguishing low-quality images which are blurred or with obstacles,

or contain only a part of face.

i.e. down-sampling with a following up-sampling, cropping

with a small part, and random color distortion. All these

three augmentations are applied with independent possibil-

ities of 0.2.

Setting B: To show the negative influence of some

extreme LQ data on the classification-based method, we

apply quality partitioning on AdaFace loss by simply

ignoring them (the contrastive learning is not presented).

Setting C: To show the effects of our proposed

framework, we apply our QGFace with the AdaFace data

augmentation. Both quality partitioning and contrastive

learning are applied.

Setting D: To show the impacts of data augmentation,

we apply our augmentation with the original AdaFace.

Setting E: Finally, we experiment our proposed

method with quality partitioning, contrastive learning, and

our data augmentation.
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Table I shows the results of the above settings. The

Baseline setting gains solid performances on the HQ

datasets and IJB-B dataset. However, its performances on

d1 of SCface dataset and Tinyface dataset are significantly

poor. In setting A, when data augmentation empowers the

original feature extractor to gain a higher performance on

the HQ and the LQ datasets, the accuracy dramatically

drops on the IJB-B dataset. This could be interpreted as a

sacrifice of the discriminability. With a single classification

supervision signal, the features become less distinctive to

compromise between the HQ and the LQ images. On IJB-B

dataset where the mixed-quality matching between images

requires stronger discriminability, this feature degradation

misleads the comparisons among a large number of faces

with various qualities. Setting B shows that only dropping

some LQ data helps the model gain better understand-

ing on the LQ SCface dataset. This illustrates that some

extremely low-quality data could mislead the training of

the classification method. Even though AdaFace adapts the

data importance according to the quality, it is harmful to

learn these LQ data with classification loss. In Setting C,

our approach relieves the degradation caused by data aug-

mentation on IJB-B and outperforms the Baseline settings.

Furthermore, the performance on SCface dataset is also

improved. Meanwhile, our performance on the HQ data is

only slightly dropped by less than 0.05% compared with

Setting B. This shows the effectiveness of contrastive learn-

ing on the LQ data and the ability of our method to keep

the comprehension on the HQ data. Setting D improves

the performances on the LQ datasets and demonstrates the

effectiveness of our data augmentation. Meanwhile, it is

inferior to Setting C on IJB-B dataset which illustrates the

effectiveness of our joint training framework again.

Finally, we implement Setting E, which is our pro-

posed approach. AdaFace learns the hard-to-learn LQ im-

ages by classification loss with relatively less importance.

Instead, we learn from them with contrastive learning. In

this way, our model keeps learning the LQ images and

gains more instance-level understanding from these less

discriminative images. As a result, our method achieves

the best results on almost all the evaluation datasets of

different qualities. To ensure that most of the augmented
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图 6. Similarity difference between QGFace and the Baseline on SCface. The

histograms illustrate the similarity between probes and their related gallery images

(matched pairs), where our method shows obvious advantages. The title of each

sub-figure indicates the sub-dataset and the improvement of the difference on the

mean similarity between the matched pairs and the most similar unmatched pairs.

LQ images are discriminable and realistic, we down-sample

each image and then up-sample it to the original resolution.

The discarding ratio, the degree of the brightness variations,

and the contrast and saturation in color distortion are set

to lower levels. In addition, we follow C. Kuo et al. [6] to

add JPEG compression artifacts to make the image more

realistic. With the new data augmentation, the augmented

images become more understandable and compliant with

the real-world low-resolution images. Fig. 5 shows some

examples. The image pairs in red box are marked as LQ.

They are harder to be identified than others in the training

data (in green box) due to the blur, the obstacles, or the

non-frontal positions in the images. Our quality partitioning

strategy sends these LQ data from the original and the

augmented images to contrastive learning, and this setting

outperforms all the other settings on SCface and Tinyface.

Furthermore, it also shows promising results on the IJB-B

dataset which contains a huge number of image pairs of

mixed qualities.

C. Ablation on the contrastive queue

Fig. 3 shows the average difference of the feature pairs

with the momentum queue and our proxy-updated real-

time queue. As the momentum queue is constructed with

the features from a slowly-progressing momentum encoder,

the features are steady and whitened. Both the positive and

the negative pairs are limited in a tight boundary. While

in real scenarios where the difference is computed with

the features from the same training encoder, it shows a

much larger gap between the query and the corresponding
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表 II

ABLATION OF DIFFERENT QUEUE SETTINGS. “NO” INDICATES APPLYING DATA AUGMENTATION AND QUALITY PARTITIONING WITHOUT CONTRASTIVE LOSS.

“BATCH” INDICATES APPLYING OUR QUALITY-GUIDED TRAINING STRATEGY WITH THE SAMPLES IN BATCH AS THE NEGATIVE POOL FOR CONTRASTIVE

LEARNING.

Queue
SCface

Tinyface IJB-B HQ Avg. LFW CFP-FP AgeDB CPLFW CALFW
d1 d2 d3

No 87.85 99.38 100.0 68.24 90.57 95.47 99.45 96.00 94.20 94.67 93.05

Batch 87.54 99.38 100.0 68.67 87.38 95.28 99.55 95.96 94.38 93.85 92.68

Momentum 63.08 97.85 99.85 62.34 88.70 95.18 99.55 96.03 93.98 94.65 91.68

Proxy-updated 92.31 99.54 100.0 69.85 91.05 95.43 99.50 96.03 94.00 94.48 93.12

key. Our proxy-updated queue takes such features as the

positive pairs in contrastive learning directly and updates

the features in queue with the identity proxies. According

to the large size of the queue compared with the training

batch, the difference between the negative pairs shows

smaller magnitudes compared with the positive features in

our queue.

Table II shows the performances of the models with

different queue settings. In the “No” situation, contrastive

learning is not applied, while both the original and the

augmented images are used for learning. In the “Batch”

setting, the queue size is limited to the current batch. The

number of feature-feature pairs in contrastive learning is

extremely smaller than the feature-identity pairs in the

classification loss. Thus, it stumbles on the IJB-B dataset

which contains a large number of mixed-quality image

pairs and needs higher discriminability. The momentum

queue utilizes the whitened features to compose the positive

and the negative pairs in contrastive learning. This misleads

the optimization process in our joint training scenario. As

a result, the performances of all datasets are lower than the

setting without a queue. Our proxy-updated queue provides

genuine positive pairs and a dynamic negative queue to

keep the same magnitude on the number of pair similarity

computation as in the classification process. This enables

the contrastive loss to effectively learn from the LQ images

and keep high discriminability. As a result, it outperforms

the baseline and the other settings equipped with other

queues on all benchmarks except a slight performance drop

(0.04%) on the HQ datasets.

D. Ablation on the quality partitioning threshold

Table III shows the results of different quality parti-

tioning thresholds. When no threshold is set, the classifica-

tion loss and the contrastive loss supervise all the data at the

same time. These two supervision signals guide the model

to compromise between the features of the LQ and the HQ

images, and the performances on SCface and HQ datasets

are limited. To alleviate the trivial parameter selection, we

scale ẑ to (0, 1) and thus the value of the threshold b lies

in the same range. With a lower threshold, more LQ data is

learned with the classification loss, and the performances

on SCface and Tinyface drop. A larger threshold gives up

the utilization of the labels of the relatively-high-quality

images, which then results in degraded features. Finally,

we choose b = 0.2 in our implementation to balance the

performances on the LQ and the HQ face images.

E. Analysis on the SCface dataset

Besides the quantitative analysis above, we further

illustrate the difference between our QGFace and the Base-

line on SCface in Fig.6. It is obvious that the matched

pairs encoded by our QGFace are more similar than the

Baseline method, which demonstrates the effectiveness of

the quality partitioning strategy, the contrastive learning,

and the selected data augmentation. As the evaluation

process aims at finding an image among all of the candi-

dates in gallery, the most similar unmatched image is also

important for the successful match. We then calculate the

statistics of the similarity between a probe and its matched

gallery image, and the similarity between the probe and

its most similar unmatched gallery image. The difference

between the means of the two kinds of similarity scores

is calculated, and the improvement of our method is noted
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表 III

ABLATION OF DIFFERENT QUALITY PARTITIONING THRESHOLDS. “NO” INDICATES THAT THE CLASSIFICATION LOSS AND THE CONTRASTIVE LOSS ARE SIMPLY

ADDED TOGETHER TO IMPLEMENT JOINT TRAINING.

Threshold
SCface

Tinyface IJB-B HQ Avg. LFW CFP-FP AgeDB CPLFW CALFW
d1 d2 d3

No 90.77 99.69 100.0 69.80 91.26 95.08 99.58 95.79 93.95 93.42 92.67

0.1 86.00 99.54 100.0 68.13 90.87 95.41 99.53 95.87 94.33 94.47 92.83

0.2 92.31 99.54 100.0 69.85 91.05 95.43 99.50 96.03 94.00 94.48 93.12
0.3 88.92 99.54 100.0 68.51 89.33 94.95 99.55 95.03 94.27 93.77 92.15

in the title of the sub-figures. When the distances become

longer and the qualities of the images become lower, the

improvement of QGFace gets larger. In the case of 4.2m,

the improvement is even more than 600%, which clearly

explains how our method improves the accuracy by more

than 30% on SCface-d1 in Table I.

F. Comparison with SOTA methods

On SCface dataset. Table IV compares our method

with the SOTA methods on SCface dataset. Many quality-

invariant methods need a fine-tuning process to learn the

target domain information. This breaks the general end-

to-end framework and limits the evaluation confidence as

only 130 identities and no distracting faces are provided

in SCface. Furthermore, all these methods show lower

accuracy scores in d3 compared with the pure AdaFace

trained with the HQ data. AdaFace-Aug, which is the same

as Setting A in Table I, achieves 100.0% by learning the

relatively-high-quality augmented images. This verifies our

hypothesis that the quality-invariant methods lose discrim-

inative information during training. Our approach achieves

the best performances on all the three distances with clear

margins compared with the other approaches. This demon-

strates the effectiveness of our proposed quality-guided

joint training strategy for mixed-quality face recognition by

simultaneously learning both the HQ and the LQ images.

On Tinyface dataset. Table V compares our method

with other SOTA methods on Tinyface dataset. For the pure

classification-based CurricularFace, even incorporated with

a larger backbone model and a larger training dataset, it

does not show an outstanding result compared with other

methods. AdaFace puts relatively less emphasis on the hard

LQ images, and outperforms CurricularFace. However, it is

still under-competitive with the methods that focus on LQ

表 IV

RANK-1 ACCURACIES (%) OF DIFFERENT METHODS ON SCFACE. “FT”

INDICATES THAT THE METHOD IS FINE-TUNED WITH A PART OF THE SCFACE

DATASET. “ADAFACE-AUG” IS THE SAME AS SETTING A IN TABLE I.

Approach Method d1 d2 d3

Quality

Invariant

T-C (IVC20) [10] 45.10 85.90 96.10

FAN (ACCV19) [44] 62.00 90.00 94.00

RAN (ECCV20) [13] 70.50 96.00 98.00

S. -C. Lai et al.(APSIPA ASC21) [45] 79.70 95.70 98.20

FAN-FT(ACCV19) [44] 77.50 95.00 98.30

RAN-FT (ECCV20) [13] 81.30 97.80 98.80

DDL (ECCV20) [14] 86.80 98.30 98.30

RIFR (TBIOM20) [11] 88.30 98.30 98.60

Synthesis

SR-DCR (ICCPR20) [27] 74.10 93.70 97.2

M. Ullah et al. (ICET21) [28] 60.81 90.45 98.04

IDEA-Net (TIFS22) [31] 90.76 98.50 99.25

Encoder-

Only

NPT-Loss (TPAMI22) [46] 85.69 99.08 99.08

AdaFace (CVPR22) [15] 61.69 97.23 99.85

AdaFace-Aug (CVPR22) [15] 66.77 99.08 100.0
PENB-FT (AAAI23) [20] 91.8 99.0 99.3

Ours 92.31 99.54 100.0

face recognition. Our method partitions the data according

to the image qualities and learns the LQ images with

contrastive learning instead of harder classification process.

The approach in RIFR [11] slightly outperforms our method

by employing a distillation approach. This needs an extra

pre-trained HQ face encoder to transfer its knowledge

to the trained encoder, while our method does not have

this preliminary requirement and is orthogonal with it. As

we focus on training a feature extractor that is capable

of dealing with the mixed-quality images, it is easy to

integrate QGFace with other methods to further improve

the performance. Furthermore, our method achieves a better

average performance on SCface and Tinyface compared

with RIFR [11], which demonstrates the effectiveness of

our QGFace in recognizing mixed-quality face images

under different scenarios.
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表 V

RANK-1 ACCURACIES (%) OF DIFFERENT METHODS ON TINYFACE. * MEANS

THAT THE METHOD IS TRAINED WITH RESNET100 ON MS1MV2 DATASET.

Approach Method Rank-1

Quality

Invariant

QualNet50-LM (CVPR21) [47] 35.54

MobileFaceNet (ICPR21) [48] 48.70

T-C (IVC20) [10] 58.60

URL (CVPR20) [49] 63.89

RIFR (TBIOM20) [11] 70.40
MIND-Resnet-50-FT (SPL21) [50] 66.82

Synthesis

CSRI-FT (ACCV18) [23] 44.80

SRDA (ICoICT21) [29] 34.15

CFSM (ECCV22) [30] 63.01

IDEA-Net (TIFS22) [31] 68.13

Encoder-

Only

CurricularFace(CVPR20)* [41] 63.68

PENB-FT (AAAI23) [20] 39

AdaFace (CVPR22) [15] 63.98

AdaFace (CVPR22)* [15] 68.21

Ours 69.85

V. CONCLUSION

We have presented our approach of quality-guided

joint training strategy for mixed-quality face recognition.

Based on quality partitioning, the high-quality data is

supervised with the classification loss while the low-quality

data is supervised with the contrastive loss. In this way, we

can learn both the HQ and the LQ images simultaneously

without any other network structures to cope with the

mixed-quality faces in real applications. The proxy-updated

real-time contrastive queue avoids the feature whitening

problem in the momentum encoder queue and improves

the discriminability on the LQ data. Our approach is as

elegant as a single feature extractor, and can be easily

integrated with other approaches such as super-resolution

and distillation to further improve the performance.
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